深入理解 Java 虚拟机第三版
深入理解Java虚拟机
第2章 Java内存区域与内存溢出异常
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。
2.1 概述
2.2 运行时数据区域
根据《Java虚拟机规范》的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域,如图2-1所示。
2.2.1 程序计数器
程序计数器(Program Counter Register)是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号指示器。
由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是本地(Native)方法,这个计数器值则应为空(Undefined)。此内存区域是唯一一个在《Java虚拟机规范》中没有规定任何OutOfMemoryError情况的区域。
2.2.2 Java虚拟机栈
与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stack)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会同步创建一个栈帧[1](Stack Frame)用于存储局部变量表、操作数栈、动态连接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
在《Java虚拟机规范》中,对这个内存区域规定了两类异常状况:如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果Java虚拟机栈容量可以动态扩展[2],当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。
[2]HotSpot虚拟机的栈容量是不可以动态扩展的。
2.2.3 本地方法栈
本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的本地(Native)方法服务。
与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。
2.2.4 Java堆
对于Java应用程序来说,Java堆(Java Heap)是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。在《Java虚拟机规范》中对Java堆的描述是:“所有的对象实例以及数组都应当在堆上分配[1]”,而这里笔者写的“几乎”是指从实现角度来看,随着Java语言的发展,现在已经能看到些许迹象表明日后可能出现值类型的支持,即使只考虑现在,由于即时编译技术的进步,尤其是逃逸分析技术的日渐强大,栈上分配、标量替换[2]优化手段已经导致一些微妙的变化悄然发生,所以说Java对象实例都分配在堆上也渐渐变得不是那么绝对了。
从回收内存的角度看,由于现代垃圾收集器大部分都是基于分代收集理论设计的,所以Java堆中经常会出现“新生代”“老年代”“永久代”“Eden空间”“From Survivor空间”“To Survivor空间”等名词,这些概念在本书后续章节中还会反复登场亮相,在这里笔者想先说明的是这些区域划分仅仅是一部分垃圾收集器的共同特性或者说设计风格而已,而非某个Java虚拟机具体实现的固有内存布局,更不是《Java虚拟机规范》里对Java堆的进一步细致划分。不少资料上经常写着类似于“Java虚拟机的堆内存分为新生代、老年代、永久代、Eden、Survivor……”这样的内容。在十年之前(以G1收集器的出现为分界),作为业界绝对主流的HotSpot虚拟机,它内部的垃圾收集器全部都基于“经典分代”[3]来设计,需要新生代、老年代收集器搭配才能工作,在这种背景下,上述说法还算是不会产生太大歧义。但是到了今天,垃圾收集器技术与十年前已不可同日而语,HotSpot里面也出现了不采用分代设计的新垃圾收集器,再按照上面的提法就有很多需要商榷的地方了。
根据《Java虚拟机规范》的规定,Java堆可以处于物理上不连续的内存空间中,但在逻辑上它应该被视为连续的,这点就像我们用磁盘空间去存储文件一样,并不要求每个文件都连续存放。但对于大对象(典型的如数组对象),多数虚拟机实现出于实现简单、存储高效的考虑,很可能会要求连续的内存空间。
Java堆既可以被实现成固定大小的,也可以是可扩展的,不过当前主流的Java虚拟机都是按照可扩展来实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆也无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。
2.2.5 方法区
方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫作“非堆”(Non-Heap),目的是与Java堆区分开来。
原则上如何实现方法区属于虚拟机实现细节,不受《Java虚拟机规范》管束,并不要求统一。
《Java虚拟机规范》对方法区的约束是非常宽松的,除了和Java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,甚至还可以选择不实现垃圾收集。相对而言,垃圾收集行为在这个区域的确是比较少出现的,但并非数据进入了方法区就如永久代的名字一样“永久”存在了。这区域的内存回收目标主要是针对常量池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收有时又确实是必要的。以前Sun公司的Bug列表中,曾出现过的若干个严重的Bug就是由于低版本的HotSpot虚拟机对此区域未完全回收而导致内存泄漏。
根据《Java虚拟机规范》的规定,如果方法区无法满足新的内存分配需求时,将抛出OutOfMemoryError异常。
2.2.6 运行时常量池
运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量池表(Constant Pool Table),用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。
运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是说,并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可以将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。
既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。
2.2.7 直接内存
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是《Java虚拟机规范》中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现,所以我们放到这里一起讲解。
在JDK 1.4中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。
显然,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括物理内存、SWAP分区或者分页文件)大小以及处理器寻址空间的限制,一般服务器管理员配置虚拟机参数时,会根据实际内存去设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制(包括物理的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。
2.3 HotSpot虚拟机对象探秘
介绍完Java虚拟机的运行时数据区域之后,我们大致明白了Java虚拟机内存模型的概况,相信读者了解过内存中放了什么,也许就会更进一步想了解这些虚拟机内存中数据的其他细节,譬如它们是如何创建、如何布局以及如何访问的。对于这样涉及细节的问题,必须把讨论范围限定在具体的虚拟机和集中在某一个内存区域上才有意义。基于实用优先的原则,笔者以最常用的虚拟机HotSpot和最常用的内存区域Java堆为例,深入探讨一下HotSpot虚拟机在Java堆中对象分配、布局和访问的全过程。
2.3.1 对象的创建
Java是一门面向对象的编程语言,Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象通常(例外:复制、反序列化)仅仅是一个new关键字而已,而在虚拟机中,对象(文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?
当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程,本书第7章将探讨这部分细节。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定(如何确定将在2.3.2节中介绍)为对象分配空间的任务实际上便等同于把一块确定大小的内存块从Java堆中划分出来。问题1:如何划分可用空间,问题2:线程安全,虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性
内存分配完成之后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值。
接下来,Java虚拟机还要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码(实际上对象的哈希码会延后到真正调用Object::hashCode()方法时才计算)、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
在上面工作都完成之后,从虚拟机的视角来看,一个新的对象已经产生了。但是从Java程序的视角看来,对象创建才刚刚开始——构造函数,即Class文件中的
2.3.2 对象的内存布局
在HotSpot虚拟机里,对象在堆内存中的存储布局可以划分为三个部分:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
HotSpot虚拟机对象的对象头部分包括两类信息。第一类是用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32个比特和64个比特,官方称它为“Mark Word”。
对象需要存储的运行时数据很多,其实已经超出了32、64位Bitmap结构所能记录的最大限度,但对象头里的信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个有着动态定义的数据结构,以便在极小的空间内存储尽量多的数据,根据对象的状态复用自己的存储空间。
例如在32位的HotSpot虚拟机中,如对象未被同步锁锁定的状态下,Mark Word的32个比特存储空间中的25个比特用于存储对象哈希码,4个比特用于存储对象分代年龄,2个比特用于存储锁标志位,1个比特固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)[1]下对象的存储内容如表2-1所示。
对象头的另外一部分是类型指针,即对象指向它的类型元数据的指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说,查找对象的元数据信息并不一定要经过对象本身,这点我们会在下一节具体讨论。此外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是如果数组的长度是不确定的,将无法通过元数据中的信息推断出数组的大小。
接下来实例数据部分是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。
对象的第三部分是对齐填充,这并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是任何对象的大小都必须是8字节的整数倍。对象头部分已经被精心设计成正好是8字节的倍数(1倍或者2倍),因此,如果对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。
2.3.3 对象的访问定位
创建对象自然是为了后续使用该对象,我们的Java程序会通过栈上的reference数据来操作堆上的具体对象。由于reference类型在《Java虚拟机规范》里面只规定了它是一个指向对象的引用,并没有定义这个引用应该通过什么方式去定位、访问到堆中对象的具体位置,所以对象访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种: ·如果使用句柄访问的话,Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息,其结构如图2-2所示。 ·如果使用直接指针访问的话,Java堆中对象的内存布局就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销,如图2-3所示。 这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。
使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销,由于对象访问在Java中非常频繁,因此这类开销积少成多也是一项极为可观的执行成本,就本书讨论的主要虚拟机HotSpot而言,它主要使用第二种方式进行对象访问。
2.4 实战:OutOfMemoryError异常
在《Java虚拟机规范》的规定里,除了程序计数器外,虚拟机内存的其他几个运行时区域都有发生OutOfMemoryError(下文称OOM)异常的可能,本节将通过若干实例来验证异常实际发生的代码场景(代码清单2-3~2-9),并且将初步介绍若干最基本的与自动内存管理子系统相关的HotSpot虚拟机参数。
2.4.1 Java堆溢出
Java堆用于储存对象实例,我们只要不断地创建对象,并且保证GC Roots到对象之间有可达路径来避免垃圾回收机制清除这些对象,那么随着对象数量的增加,总容量触及最大堆的容量限制后就会产生内存溢出异常。
通过参数-XX:+HeapDumpOnOutOf-MemoryError可以让虚拟机在出现内存溢出异常的时候Dump出当前的内存堆转储快照以便进行事后分析
/**
* VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
* @author zzm
*/
public class HeapOOM {
static class OOMObject {
}
public static void main(String[] args) {
List<OOMObject> list = new ArrayList<OOMObject>();
while (true) {
list.add(new OOMObject());
}
}
}
Java堆内存的OutOfMemoryError异常是实际应用中最常见的内存溢出异常情况。出现Java堆内存溢出时,异常堆栈信息“java.lang.OutOfMemoryError”会跟随进一步提示“Java heap space”。
要解决这个内存区域的异常,常规的处理方法是首先通过内存映像分析工具(如Eclipse Memory Analyzer)对Dump出来的堆转储快照进行分析。第一步首先应确认内存中导致OOM的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow)。图2-5显示了使用Eclipse Memory Analyzer打开的堆转储快照文件。
如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链,找到泄漏对象是通过怎样的引用路径、与哪些GC Roots相关联,才导致垃圾收集器无法回收它们,根据泄漏对象的类型信息以及它到GC Roots引用链的信息,一般可以比较准确地定位到这些对象创建的位置,进而找出产生内存泄漏的代码的具体位置。
如果不是内存泄漏,换句话说就是内存中的对象确实都是必须存活的,那就应当检查Java虚拟机的堆参数(-Xmx与-Xms)设置,与机器的内存对比,看看是否还有向上调整的空间。再从代码上检查是否存在某些对象生命周期过长、持有状态时间过长、存储结构设计不合理等情况,尽量减少程序运行期的内存消耗。
2.4.2 虚拟机栈和本地方法栈溢出
由于HotSpot虚拟机中并不区分虚拟机栈和本地方法栈,因此对于HotSpot来说,-Xoss参数(设置本地方法栈大小)虽然存在,但实际上是没有任何效果的,栈容量只能由-Xss参数来设定。关于虚拟机栈和本地方法栈,在《Java虚拟机规范》中描述了两种异常: 1)如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。 2)如果虚拟机的栈内存允许动态扩展,当扩展栈容量无法申请到足够的内存时,将抛出OutOfMemoryError异常。
/**
* VM Args:-Xss128k
* @author zzm
*/
public class JavaVMStackSOF {
private int stackLength = 1;
public void stackLeak() {
stackLength++;
stackLeak();
}
public static void main(String[] args) throws Throwable {
JavaVMStackSOF oom = new JavaVMStackSOF();
try {
oom.stackLeak();
} catch (Throwable e) {
System.out.println("stack length:" + oom.stackLength);
throw e;
}
}
}
我们继续验证第二种情况,
虚拟机栈和本地方法栈测试(作为第2点测试程序)
/**
* @author zzm
*/
public class JavaVMStackSOF {
private static int stackLength = 0;
public static void test() {
long unused1, unused2, unused3, unused4, unused5,
unused6, unused7, unused8, unused9, unused10,
unused11, unused12, unused13, unused14, unused15,
unused16, unused17, unused18, unused19, unused20,
unused21, unused22, unused23, unused24, unused25,
unused26, unused27, unused28, unused29, unused30,
unused31, unused32, unused33, unused34, unused35,
unused36, unused37, unused38, unused39, unused40,
unused41, unused42, unused43, unused44, unused45,
unused46, unused47, unused48, unused49, unused50,
unused51, unused52, unused53, unused54, unused55,
unused56, unused57, unused58, unused59, unused60,
unused61, unused62, unused63, unused64, unused65,
unused66, unused67, unused68, unused69, unused70,
unused71, unused72, unused73, unused74, unused75,
unused76, unused77, unused78, unused79, unused80,
unused81, unused82, unused83, unused84, unused85,
unused86, unused87, unused88, unused89, unused90,
unused91, unused92, unused93, unused94, unused95,
unused96, unused97, unused98, unused99, unused100;
stackLength ++;
test();
unused1 = unused2 = unused3 = unused4 = unused5 =
unused6 = unused7 = unused8 = unused9 = unused10 =
unused11 = unused12 = unused13 = unused14 = unused15 =
unused16 = unused17 = unused18 = unused19 = unused20 =
unused21 = unused22 = unused23 = unused24 = unused25 =
unused26 = unused27 = unused28 = unused29 = unused30 =
unused31 = unused32 = unused33 = unused34 = unused35 =
unused36 = unused37 = unused38 = unused39 = unused40 =
unused41 = unused42 = unused43 = unused44 = unused45 =
unused46 = unused47 = unused48 = unused49 = unused50 =
unused51 = unused52 = unused53 = unused54 = unused55 =
unused56 = unused57 = unused58 = unused59 = unused60 =
unused61 = unused62 = unused63 = unused64 = unused65 =
unused66 = unused67 = unused68 = unused69 = unused70 =
unused71 = unused72 = unused73 = unused74 = unused75 =
unused76 = unused77 = unused78 = unused79 = unused80 =
unused81 = unused82 = unused83 = unused84 = unused85 =
unused86 = unused87 = unused88 = unused89 = unused90 =
unused91 = unused92 = unused93 = unused94 = unused95 =
unused96 = unused97 = unused98 = unused99 = unused100 = 0;
}
public static void main(String[] args) {
try {
test();
}catch (Error e){
System.out.println("stack length:" + stackLength);
throw e;
}
}
}
实验结果表明:无论是由于栈帧太大还是虚拟机栈容量太小,当新的栈帧内存无法分配的时候,HotSpot虚拟机抛出的都是StackOverflowError异常。
创建线程导致内存溢出异常
/**
* VM Args:-Xss2M (这时候不妨设大些,请在32位系统下运行)
* @author zzm
*/
public class JavaVMStackOOM {
private void dontStop() {
while (true) {
}
}
public void stackLeakByThread() {
while (true) {
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
dontStop();
}
});
thread.start();
}
}
public static void main(String[] args) throws Throwable {
JavaVMStackOOM oom = new JavaVMStackOOM();
oom.stackLeakByThread();
}
}
如果是建立过多线程导致的内存溢出,在不能减少线程数量或者更换64位虚拟机的情况下,就只能通过减少最大堆和减少栈容量来换取更多的线程。这种通过“减少内存”的手段来解决内存溢出的方式。
2.4.3 方法区和运行时常量池溢出
由于运行时常量池是方法区的一部分,所以这两个区域的溢出测试可以放到一起进行。前面曾经提到HotSpot从JDK 7开始逐步“去永久代”的计划,并在JDK 8中完全使用元空间来代替永久代的背景故事,在此我们就以测试代码来观察一下,使用“永久代”还是“元空间”来实现方法区,对程序有什么实际的影响。
String::intern()是一个本地方法,它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象的引用;否则,会将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。
在JDK 6或更早之前的HotSpot虚拟机中,常量池都是分配在永久代中,我们可以通过-XX:PermSize和-XX:MaxPermSize限制永久代的大小,即可间接限制其中常量池的容量,具体实现如代码清单2-7所示,请读者测试时首先以JDK 6来运行代码。
代码清单2-7 运行时常量池导致的内存溢出异常
/**
* VM Args:-XX:PermSize=6M -XX:MaxPermSize=6M
* @author zzm
*/
public class RuntimeConstantPoolOOM {
public static void main(String[] args) {
// 使用Set保持着常量池引用,避免Full GC回收常量池行为
Set<String> set = new HashSet<String>();
// 在short范围内足以让6MB的PermSize产生OOM了
short i = 0;
while (true) {
set.add(String.valueOf(i++).intern());
}
}
}
运行结果:
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space
at java.lang.String.intern(Native Method)
at org.fenixsoft.oom.RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java: 18)
从运行结果中可以看到,运行时常量池溢出时,在OutOfMemoryError异常后面跟随的提示信息是“PermGen space”,说明运行时常量池的确是属于方法区(即JDK 6的HotSpot虚拟机中的永久代)的一部分。
而使用JDK 7或更高版本的JDK来运行这段程序并不会得到相同的结果,无论是在JDK 7中继续使用-XX:MaxPermSize
参数或者在JDK 8及以上版本使用-XX:MaxMetaspaceSize
参数把方法区容量同样限制在6 MB,也都不会重现JDK 6中的溢出异常,循环将一直进行下去,永不停歇[1]。
出现这种变化,是因为自JDK 7起,原本存放在永久代的字符串常量池被移至Java堆之中,所以在JDK 7及以上版本,限制方法区的容量对该测试用例来说是毫无意义的。这时候使用-Xmx
参数限制最大堆到6 MB就能够看到以下两种运行结果之一,具体取决于哪里的对象分配时产生了溢出:
// OOM异常一:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at java.base/java.lang.Integer.toString(Integer.java:440)
at java.base/java.lang.String.valueOf(String.java:3058)
at RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java:12)
// OOM异常二:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at java.base/java.util.HashMap.resize(HashMap.java:699)
at java.base/java.util.HashMap.putVal(HashMap.java:658)
at java.base/java.util.HashMap.put(HashMap.java:607)
at java.base/java.util.HashSet.add(HashSet.java:220)
at RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java from InputFile-Object:14)
关于这个字符串常量池的实现在哪里出现问题,还可以引申出一些更有意思的影响,具体见代码清单2-8所示。 代码清单2-8 String.intern()返回引用的测试
public class RuntimeConstantPoolOOM {
public static void main(String[] args) {
String str1 = new StringBuilder("计算机").append("软件").toString();
System.out.println(str1.intern() == str1);
String str2 = new StringBuilder("ja").append("va").toString();
System.out.println(str2.intern() == str2);
}
}
这段代码在JDK 6中运行,会得到两个false,而在JDK 7中运行,会得到一个true和一个false。产生差异的原因是,在JDK 6中,intern()方法会把首次遇到的字符串实例复制到永久代的字符串常量池中存储,返回的也是永久代里面这个字符串实例的引用,而由StringBuilder创建的字符串对象实例在Java堆上,所以必然不可能是同一个引用,结果将返回false。 而JDK 7(以及部分其他虚拟机,例如JRockit)的intern()方法实现就不需要再拷贝字符串的实例到永久代了,既然字符串常量池已经移到Java堆中,那只需要在常量池里记录一下首次出现的实例引用即可,因此intern()返回的引用和由StringBuilder创建的那个字符串实例就是同一个。而对str2比较返回false,这是因为“java”[2]这个字符串在执行String-Builder.toString()之前就已经出现过了,字符串常量池中已经有它的引用,不符合intern()方法要求“首次遇到”的原则,“计算机软件”这个字符串则是首次出现的,因此结果返回true。
我们再来看看方法区的其他部分的内容,方法区的主要职责是用于存放类型的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。对于这部分区域的测试,基本的思路是运行时产生大量的类去填满方法区,直到溢出为止。虽然直接使用Java SE API也可以动态产生类(如反射时的GeneratedConstructorAccessor和动态代理等),但在本次实验中操作起来比较麻烦。在代码清单2-8里笔者借助了CGLib[3]直接操作字节码运行时生成了大量的动态类。
代码清单2-9 借助CGLib使得方法区出现内存溢出异常
/**
* VM Args:-XX:PermSize=10M -XX:MaxPermSize=10M
* @author zzm
*/
public class JavaMethodAreaOOM {
public static void main(String[] args) {
while (true) {
Enhancer enhancer = new Enhancer();
enhancer.setSuperclass(OOMObject.class);
enhancer.setUseCache(false);
enhancer.setCallback(new MethodInterceptor() {
public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable {
return proxy.invokeSuper(obj, args);
}
});
enhancer.create();
}
}
static class OOMObject {
}
}
在JDK 7中的运行结果:
Caused by: java.lang.OutOfMemoryError: PermGen space
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClassCond(ClassLoader.java:632)
at java.lang.ClassLoader.defineClass(ClassLoader.java:616)
... 8 more
方法区溢出也是一种常见的内存溢出异常,一个类如果要被垃圾收集器回收,要达成的条件是比较苛刻的。在经常运行时生成大量动态类的应用场景里,就应该特别关注这些类的回收状况。
在JDK 8以后,永久代便完全退出了历史舞台,元空间作为其替代者登场。在默认设置下,前面列举的那些正常的动态创建新类型的测试用例已经很难再迫使虚拟机产生方法区的溢出异常了。不过为了让使用者有预防实际应用里出现类似于代码清单2-9那样的破坏性的操作,HotSpot还是提供了一些参数作为元空间的防御措施,主要包括:
-XX:MaxMetaspaceSize:设置元空间最大值,默认是-1,即不限制,或者说只受限于本地内存大小。
-XX:MetaspaceSize:指定元空间的初始空间大小,以字节为单位,达到该值就会触发垃圾收集进行类型卸载,同时收集器会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过-XX:MaxMetaspaceSize(如果设置了的话)的情况下,适当提高该值。
·-XX:MinMetaspaceFreeRatio:作用是在垃圾收集之后控制最小的元空间剩余容量的百分比,可减少因为元空间不足导致的垃圾收集的频率。类似的还有-XX:Max-MetaspaceFreeRatio,用于控制最大的元空间剩余容量的百分比。
2.4.4 本机直接内存溢出
直接内存(Direct Memory)的容量大小可通过-XX:MaxDirectMemorySize参数来指定,如果不去指定,则默认与Java堆最大值(由-Xmx指定)一致,
,代码清单2-10越过了DirectByteBuffer类直接通过反射获取Unsafe实例进行内存分配(Unsafe类的getUnsafe()方法指定只有引导类加载器才会返回实例,体现了设计者希望只有虚拟机标准类库里面的类才能使用Unsafe的功能,在JDK 10时才将Unsafe的部分功能通过VarHandle开放给外部使用),因为虽然使用DirectByteBuffer分配内存也会抛出内存溢出异常,但它抛出异常时并没有真正向操作系统申请分配内存,而是通过计算得知内存无法分配就会在代码里手动抛出溢出异常,真正申请分配内存的方法是Unsafe::allocateMemory()。
代码清单2-10 使用unsafe分配本机内存
/**
* VM Args:-Xmx20M -XX:MaxDirectMemorySize=10M
* @author zzm
*/
public class DirectMemoryOOM {
private static final int _1MB = 1024 * 1024;
public static void main(String[] args) throws Exception {
Field unsafeField = Unsafe.class.getDeclaredFields()[0];
unsafeField.setAccessible(true);
Unsafe unsafe = (Unsafe) unsafeField.get(null);
while (true) {
unsafe.allocateMemory(_1MB);
}
}
}
由直接内存导致的内存溢出,一个明显的特征是在Heap Dump文件中不会看见有什么明显的异常情况,如果读者发现内存溢出之后产生的Dump文件很小,而程序中又直接或间接使用了DirectMemory(典型的间接使用就是NIO),那就可以考虑重点检查一下直接内存方面的原因了。
2.5 本章小结
到此为止,我们明白了虚拟机里面的内存是如何划分的,哪部分区域、什么样的代码和操作可能导致内存溢出异常。虽然Java有垃圾收集机制,但内存溢出异常离我们并不遥远,本章只是讲解了各个区域出现内存溢出异常的原因,下一章将详细讲解Java垃圾收集机制为了避免出现内存溢出异常都做了哪些努力。
第3章 垃圾收集和内存分配策略
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。
3.1 概述
说起垃圾收集(Garbage Collection,下文简称GC),有不少人把这项技术当作Java语言的伴生产物。事实上,垃圾收集的历史远远比Java久远,在1960年诞生于麻省理工学院的Lisp是第一门开始使用内存动态分配和垃圾收集技术的语言。当Lisp还在胚胎时期时,其作者John McCarthy就思考过垃圾收集需要完成的三件事情:
- 哪些内存需要回收?
- 什么时候回收?
- 如何回收?
经过半个世纪的发展,今天的内存动态分配与内存回收技术已经相当成熟,一切看起来都进入了“自动化”时代,那为什么我们还要去了解垃圾收集和内存分配?答案很简单:当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。
第2章介绍了Java内存运行时区域的各个部分,其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭,栈中的栈帧随着方法的进入和退出而有条不紊地执行着出栈和入栈操作。这几个区域的内存分配和回收都具备确定性,在这几个区域内就不需要过多考虑如何回收的问题,当方法结束或者线程结束时,内存自然就跟随着回收了。
而Java堆和方法区这两个区域则有着很显著的不确定性:一个接口的多个实现类需要的内存可能会不一样,一个方法所执行的不同条件分支所需要的内存也可能不一样,只有处于运行期间,我们才能知道程序究竟会创建哪些对象,创建多少个对象,这部分内存的分配和回收是动态的。垃圾收集器所关注的正是这部分内存该如何管理,本文后续讨论中的“内存”分配与回收也仅仅特指这一部分内存。
3.2 对象已死?
在堆里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中哪些还“存活”着,哪些已经“死去”(“死去”即不可能再被任何途径使用的对象)了。
3.2.1 引用计数算法
很多教科书判断对象是否存活的算法是这样的:在对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加一;当引用失效时,计数器值就减一;任何时刻计数器为零的对象就是不可能再被使用的。
客观地说,引用计数算法(Reference Counting)虽然占用了一些额外的内存空间来进行计数,但它的原理简单,判定效率也很高,在大多数情况下它都是一个不错的算法。但是,在Java领域,至少主流的Java虚拟机里面都没有选用引用计数算法来管理内存,主要原因是,这个看似简单的算法有很多例外情况要考虑,必须要配合大量额外处理才能保证正确地工作,譬如单纯的引用计数就很难解决对象之间相互循环引用的问题。
3.2.2 可达性分析算法
当前主流的商用程序语言(Java、C#,上溯至前面提到的古老的Lisp)的内存管理子系统,都是通过可达性分析(Reachability Analysis)算法来判定对象是否存活的。这个算法的基本思路就是通过一系列称为“GC Roots”的根对象作为起始节点集,从这些节点开始,根据引用关系向下搜索,搜索过程所走过的路径称为“引用链”(Reference Chain),如果某个对象到GC Roots间没有任何引用链相连,或者用图论的话来说就是从GC Roots到这个对象不可达时,则证明此对象是不可能再被使用的。
如图3-1所示,对象object 5、object 6、object 7虽然互有关联,但是它们到GC Roots是不可达的,因此它们将会被判定为可回收的对象。
在Java技术体系里面,固定可作为GC Roots的对象包括以下几种:
- 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使用到的参数、局部变量、临时变量等。
- 在方法区中类静态属性引用的对象,譬如Java类的引用类型静态变量。
- 在方法区中常量引用的对象,譬如字符串常量池(String Table)里的引用。
- 在本地方法栈中JNI(即通常所说的Native方法)引用的对象。
- Java虚拟机内部的引用,如基本数据类型对应的Class对象,一些常驻的异常对象(比如NullPointExcepiton、OutOfMemoryError)等,还有系统类加载器。
- 所有被同步锁(synchronized关键字)持有的对象。
- 反映Java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等
除了这些固定的GC Roots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。
目前最新的几款垃圾收集器[1]无一例外都具备了局部回收的特征,为了避免GC Roots包含过多对象而过度膨胀,它们在实现上也做出了各种优化处理。
3.2.3 再谈引用
无论是通过引用计数算法判断对象的引用数量,还是通过可达性分析算法判断对象是否引用链可达,判定对象是否存活都和“引用”离不开关系。在JDK 1.2版之前,Java里面的引用是很传统的定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称该reference数据是代表某块内存、某个对象的引用。这种定义并没有什么不对,只是现在看来有些过于狭隘了,一个对象在这种定义下只有“被引用”或者“未被引用”两种状态,对于描述一些“食之无味,弃之可惜”的对象就显得无能为力。
在JDK 1.2版之后,Java对引用的概念进行了扩充,将引用分为强引用(Strongly Re-ference)、软引用(Soft Reference)、弱引用(Weak Reference)和虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
- 强引用是最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj=new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。
- 软引用是用来描述一些还有用,但非必须的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。在JDK 1.2版之后提供了SoftReference类来实现软引用。
- 弱引用也是用来描述那些非必须对象,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生为止。当垃圾收集器开始工作,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2版之后提供了WeakReference类来实现弱引用。
- ·虚引用也称为“幽灵引用”或者“幻影引用”,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的只是为了能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2版之后提供了PhantomReference类来实现虚引用。
3.2.4 生存还是死亡?
即使在可达性分析算法中判定为不可达的对象,也不是“非死不可”的,这时候它们暂时还处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记,随后进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。假如对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,那么虚拟机将这两种情况都视为“没有必要执行”。
如果这个对象被判定为确有必要执行finalize()方法,那么该对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低调度优先级的Finalizer线程去执行它们的finalize()方法。
finalize()能做的所有工作,使用try-finally或者其他方式都可以做得更好、更及时,所以笔者建议大家完全可以忘掉Java语言里面的这个方法。
3.2.5 回收方法区
有些人认为方法区(如HotSpot虚拟机中的元空间或者永久代)是没有垃圾收集行为的,《Java虚拟机规范》中提到过可以不要求虚拟机在方法区中实现垃圾收集,事实上也确实有未实现或未能完整实现方法区类型卸载的收集器存在(如JDK 11时期的ZGC收集器就不支持类卸载),方法区垃圾收集的“性价比”通常也是比较低的:在Java堆中,尤其是在新生代中,对常规应用进行一次垃圾收集通常可以回收70%至99%的内存空间,相比之下,方法区回收囿于苛刻的判定条件,其区域垃圾收集的回收成果往往远低于此。
方法区的垃圾收集主要回收两部分内容:废弃的常量和不再使用的类型。回收废弃常量与回收Java堆中的对象非常类似。举个常量池中字面量回收的例子,假如一个字符串“java”曾经进入常量池中,但是当前系统又没有任何一个字符串对象的值是“java”,换句话说,已经没有任何字符串对象引用常量池中的“java”常量,且虚拟机中也没有其他地方引用这个字面量。如果在这时发生内存回收,而且垃圾收集器判断确有必要的话,这个“java”常量就将会被系统清理出常量池。常量池中其他类(接口)、方法、字段的符号引用也与此类似。
判定一个常量是否“废弃”还是相对简单,而要判定一个类型是否属于“不再被使用的类”的条件就比较苛刻了。需要同时满足下面三个条件:
- 该类所有的实例都已经被回收,也就是Java堆中不存在该类及其任何派生子类的实例。
- 加载该类的类加载器已经被回收,这个条件除非是经过精心设计的可替换类加载器的场景,如OSGi、JSP的重加载等,否则通常是很难达成的。
- 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
Java虚拟机被允许对满足上述三个条件的无用类进行回收,这里说的仅仅是“被允许”,而并不是和对象一样,没有引用了就必然会回收。关于是否要对类型进行回收,HotSpot虚拟机提供了-Xnoclassgc参数进行控制,还可以使用-verbose:class以及-XX:+TraceClass-Loading、-XX:+TraceClassUnLoading查看类加载和卸载信息,其中-verbose:class和-XX:+TraceClassLoading可以在Product版的虚拟机中使用,-XX:+TraceClassUnLoading参数需要FastDebug版[1]的虚拟机支持。
在大量使用反射、动态代理、CGLib等字节码框架,动态生成JSP以及OSGi这类频繁自定义类加载器的场景中,通常都需要Java虚拟机具备类型卸载的能力,以保证不会对方法区造成过大的内存压力。
3.3 垃圾收集算法
垃圾收集算法的实现涉及大量的程序细节,且各个平台的虚拟机操作内存的方法都有差异,在本节中我们暂不过多讨论算法实现,只重点介绍分代收集理论和几种算法思想及其发展过程。
3.3.1 分代收集理论
当前商业虚拟机的垃圾收集器,大多数都遵循了“分代收集”(Generational Collection)[1]的理论进行设计,分代收集名为理论,实质是一套符合大多数程序运行实际情况的经验法则,它建立在两个分代假说之上: 1)弱分代假说(Weak Generational Hypothesis):绝大多数对象都是朝生夕灭的。 2)强分代假说(Strong Generational Hypothesis):熬过越多次垃圾收集过程的对象就越难以消亡。
这两个分代假说共同奠定了多款常用的垃圾收集器的一致的设计原则:收集器应该将Java堆划分出不同的区域,然后将回收对象依据其年龄(年龄即对象熬过垃圾收集过程的次数)分配到不同的区域之中存储。
在Java堆划分出不同的区域之后,垃圾收集器才可以每次只回收其中某一个或者某些部分的区域——因而才有了“Minor GC”“Major GC”“Full GC”这样的回收类型的划分;也才能够针对不同的区域安排与里面存储对象存亡特征相匹配的垃圾收集算法——因而发展出了“标记-复制算法”“标记-清除算法”“标记-整理算法”等针对性的垃圾收集算法。
把分代收集理论具体放到现在的商用Java虚拟机里,设计者一般至少会把Java堆划分为新生代(Young Generation)和老年代(Old Generation)两个区域[2]。
其实我们只要仔细思考一下,也很容易发现分代收集并非只是简单划分一下内存区域那么容易,它至少存在一个明显的困难:对象不是孤立的,对象之间会存在跨代引用。
假如要现在进行一次只局限于新生代区域内的收集(Minor GC),但新生代中的对象是完全有可能被老年代所引用的,为了找出该区域中的存活对象,不得不在固定的GC Roots之外,再额外遍历整个老年代中所有对象来确保可达性分析结果的正确性,反过来也是一样[3]。遍历整个老年代所有对象的方案虽然理论上可行,但无疑会为内存回收带来很大的性能负担。为了解决这个问题,就需要对分代收集理论添加第三条经验法则: 3)跨代引用假说(Intergenerational Reference Hypothesis):跨代引用相对于同代引用来说仅占极少数。
部分收集(Partial GC):指目标不是完整收集整个Java堆的垃圾收集,其中又分为:
- 新生代收集(Minor GC/Young GC):指目标只是新生代的垃圾收集。
- 老年代收集(Major GC/Old GC):指目标只是老年代的垃圾收集。目前只有CMS收集器会有单独收集老年代的行为。另外请注意“Major GC”这个说法现在有点混淆,在不同资料上常有不同所指,读者需按上下文区分到底是指老年代的收集还是整堆收集。
- 混合收集(Mixed GC):指目标是收集整个新生代以及部分老年代的垃圾收集。目前只有G1收集器会有这种行为。
- 整堆收集(Full GC):收集整个Java堆和方法区的垃圾收集。
3.3.2 标记-清除算法
如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后,统一回收掉所有被标记的对象,也可以反过来,标记存活的对象,统一回收所有未被标记的对象。
之所以说它是最基础的收集算法,是因为后续的收集算法大多都是以标记-清除算法为基础,对其缺点进行改进而得到的。
它的主要缺点有两个:
- 第一个是执行效率不稳定,如果Java堆中包含大量对象,而且其中大部分是需要被回收的,这时必须进行大量标记和清除的动作,导致标记和清除两个过程的执行效率都随对象数量增长而降低;
- 第二个是内存空间的碎片化问题,标记、清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致当以后在程序运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
3.3.3 标记-复制算法
标记-复制算法常被简称为复制算法。为了解决标记-清除算法面对大量可回收对象时执行效率低的问题,1969年Fenichel提出了一种称为“半区复制”(Semispace Copying)的垃圾收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
这样实现简单,运行高效,不过其缺陷也显而易见,这种复制回收算法的代价是将可用内存缩小为了原来的一半,空间浪费未免太多了一点。
现在的商用Java虚拟机大多都优先采用了这种收集算法去回收新生代,IBM公司曾有一项专门研究对新生代“朝生夕灭”的特点做了更量化的诠释——新生代中的对象有98%熬不过第一轮收集。因此并不需要按照1∶1的比例来划分新生代的内存空间。
一种更优化的半区复制分代策略,现在称为“Appel式回收”。
具体做法是把新生代分为一块较大的Eden空间和两块较小的Survivor空间,每次分配内存只使用Eden和其中一块Survivor。发生垃圾搜集时,将Eden和Survivor中仍然存活的对象一次性复制到另外一块Survivor空间上,然后直接清理掉Eden和已用过的那块Survivor空间。
HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也即每次新生代中可用内存空间为整个新生代容量的90%(Eden的80%加上一个Survivor的10%),只有一个Survivor空间,即10%的新生代是会被“浪费”的。当然,98%的对象可被回收仅仅是“普通场景”下测得的数据,任何人都没有办法百分百保证每次回收都只有不多于10%的对象存活,因此Appel式回收还有一个充当罕见情况的“逃生门”的安全设计,当Survivor空间不足以容纳一次Minor GC之后存活的对象时,就需要依赖其他内存区域(实际上大多就是老年代)进行分配担保(Handle Promotion)。
3.3.4 标记-整理算法
标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。
针对老年代对象的存亡特征,1974年Edward Lueders提出了另外一种有针对性的“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存,“标记-整理”算法的示意图如图3-4所示。
标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:
如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行[1],这就更加让使用者不得不小心翼翼地权衡其弊端了,像这样的停顿被最初的虚拟机设计者形象地描述为“Stop The World”[2]。
是否移动对象都存在弊端,移动则内存回收时会更复杂,不移动则内存分配时会更复杂。从垃圾收集的停顿时间来看,不移动对象停顿时间会更短,甚至可以不需要停顿,但是从整个程序的吞吐量来看,移动对象会更划算。(通常标记-清除算法也是需要停顿用户线程来标记、清理可回收对象的,只是停顿时间相对而言要来的短而已。)
3.4 HotSpot的算法细节实现
3.2、3.3节从理论原理上介绍了常见的对象存活判定算法和垃圾收集算法,Java虚拟机实现这些算法时,必须对算法的执行效率有严格的考量,才能保证虚拟机高效运行。本章设置这部分内容主要是为了稍后介绍各款垃圾收集器时做前置知识铺垫,如果读者对这部分内容感到枯燥或者疑惑,不妨先跳过去,等后续遇到要使用它们的实际场景、实际问题时再结合问题,重新翻阅和理解。
3.4.1 根节点枚举
迄今为止,所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的。根节点枚举始终还是必须在一个能保障一致性的快照中才得以进行——这里“一致性”的意思是整个枚举期间执行子系统看起来就像被冻结在某个时间点上,不会出现分析过程中,根节点集合的对象引用关系还在不断变化的情况,若这点不能满足的话,分析结果准确性也就无法保证。
HotSpot的解决方案里,是使用一组称为OopMap的数据结构来达到这个目的。一旦类加载动作完成的时候,HotSpot就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译(见第11章)过程中,也会在特定的位置记录下栈里和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等GC Roots开始查找。
3.4.2 安全点
实际上HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置被称为安全点(Safepoint)。有了安全点的设定,也就决定了用户程序执行时并非在代码指令流的任意位置都能够停顿下来开始垃圾收集,而是强制要求必须执行到达安全点后才能够暂停。因此,安全点的选定既不能太少以至于让收集器等待时间过长,也不能太过频繁以至于过分增大运行时的内存负荷。
3.4.3 安全区域
使用安全点的设计似乎已经完美解决如何停顿用户线程,让虚拟机进入垃圾回收状态的问题了,但实际情况却并不一定。安全点机制保证了程序执行时,在不太长的时间内就会遇到可进入垃圾收集过程的安全点。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配处理器时间,典型的场景便是用户线程处于Sleep状态或者Blocked状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域(Safe Region)来解决。 安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。
3.4.4 记忆集与卡表
讲解分代收集理论的时候,提到了为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为记忆集(Remembered Set)的数据结构,用以避免把整个老年代加进GC Roots扫描范围。事实上并不只是新生代、老年代之间才有跨代引用的问题,所有涉及部分区域收集(Partial GC)行为的垃圾收集器,典型的如G1、ZGC和Shenandoah收集器,都会面临相同的问题,因此我们有必要进一步理清记忆集的原理和实现方式,以便在后续章节里介绍几款最新的收集器相关知识时能更好地理解。
3.4.5 写屏障
我们已经解决了如何使用记忆集来缩减GC Roots扫描范围的问题,但还没有解决卡表元素如何维护的问题,例如它们何时变脏、谁来把它们变脏等。 卡表元素何时变脏的答案是很明确的——有其他分代区域中对象引用了本区域对象时,其对应的卡表元素就应该变脏,变脏时间点原则上应该发生在引用类型字段赋值的那一刻。但问题是如何变脏,即如何在对象赋值的那一刻去更新维护卡表呢?假如是解释执行的字节码,那相对好处理,虚拟机负责每条字节码指令的执行,有充分的介入空间;但在编译执行的场景中呢?经过即时编译后的代码已经是纯粹的机器指令流了,这就必须找到一个在机器码层面的手段,把维护卡表的动作放到每一个赋值操作之中。 在HotSpot虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的。先请读者注意将这里提到的“写屏障”,以及后面在低延迟收集器中会提到的“读屏障”与解决并发乱序执行问题中的“内存屏障”[1]区分开来,避免混淆。写屏障可以看作在虚拟机层面对“引用类型字段赋值”这个动作的AOP切面[2],在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写屏障的覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot虚拟机的许多收集器中都有使用到写屏障,但直至G1收集器出现之前,其他收集器都只用到了写后屏障。
3.4.6 并发的可达性分析
略
3.5 经典垃圾收集器
如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者。《Java虚拟机规范》中对垃圾收集器应该如何实现并没有做出任何规定,因此不同的厂商、不同版本的虚拟机所包含的垃圾收集器都可能会有很大差别,不同的虚拟机一般也都会提供各种参数供用户根据自己的应用特点和要求组合出各个内存分代所使用的收集器。
各款经典收集器之间的关系如图3-6所示。
图3-6展示了七种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用[3],图中收集器所处的区域,则表示它是属于新生代收集器抑或是老年代收集器。接下来笔者将逐一介绍这些收集器的目标、特性、原理和使用场景,并重点分析CMS和G1这两款相对复杂而又广泛使用的收集器,深入了解它们的部分运作细节。
这个关系不是一成不变的,由于维护和兼容性测试的成本,在JDK 8时将Serial+CMS、ParNew+Serial Old这两个组合声明为废弃(JEP 173),并在JDK 9中完全取消了这些组合的支持(JEP 214)。
3.5.1 Serial收集器
略
3.5.2 ParNew收集器
ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio、-XX:PretenureSizeThreshold、-XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一致,在实现上这两种收集器也共用了相当多的代码。
在JDK 5发布时,HotSpot推出了一款在强交互应用中几乎可称为具有划时代意义的垃圾收集器——CMS收集器。这款收集器是HotSpot虚拟机中第一款真正意义上支持并发的垃圾收集器,它首次实现了让垃圾收集线程与用户线程(基本上)同时工作。 遗憾的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作[1],所以在JDK 5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器是激活CMS后(使用-XX:+UseConcMarkSweepGC选项)的默认新生代收集器,也可以使用-XX:+/-UseParNewGC选项来强制指定或者禁用它。
可以说直到CMS的出现才巩固了ParNew的地位,但成也萧何败也萧何,随着垃圾收集器技术的不断改进,更先进的G1收集器带着CMS继承者和替代者的光环登场。G1是一个面向全堆的收集器,不再需要其他新生代收集器的配合工作。所以自JDK 9开始,ParNew加CMS收集器的组合就不再是官方推荐的服务端模式下的收集器解决方案了。官方希望它能完全被G1所取代,甚至还取消了ParNew加Serial Old以及Serial加CMS这两组收集器组合的支持(其实原本也很少人这样使用),并直接取消了-XX:+UseParNewGC参数,这意味着ParNew和CMS从此只能互相搭配使用,再也没有其他收集器能够和它们配合了。。读者也可以理解为从此以后,ParNew合并入CMS,成为它专门处理新生代的组成部分。ParNew可以说是HotSpot虚拟机中第一款退出历史舞台的垃圾收集器。
- 并行(Parallel):并行描述的是多条垃圾收集器线程之间的关系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
- 并发(Concurrent):并发描述的是垃圾收集器线程与用户线程之间的关系,说明同一时间垃圾收集器线程与用户线程都在运行。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。
3.5.3 Parallel Scavenge收集器
Parallel Scavenge收集器也是一款新生代收集器,它同样是基于标记-复制算法实现的收集器,也是能够并行收集的多线程收集器……Parallel Scavenge的诸多特性从表面上看和ParNew非常相似,那它有什么特别之处呢? Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。
3.5.4 Serial Old收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。
3.5.5 Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记-整理算法实现。这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比ParNew加CMS的组合来得优秀。
直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。
3.5.6 CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。
从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括: 1)初始标记(CMS initial mark) 2)并发标记(CMS concurrent mark) 3)重新标记(CMS remark) 4)并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(详见3.4.6节中关于增量更新的讲解),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。
由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图3-11可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。
CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:
- 首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量+3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时,CMS对用户程序的影响就可能变得很大。
- 然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集,但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。
- 还有最后一个缺点,在本节的开头曾提到,CMS是一款基于“标记-清除”算法实现的收集器,如果读者对前面这部分介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBefore-Compaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。
3.5.7 Garbage First收集器
Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。早在JDK 7刚刚确立项目目标、Oracle公司制定的JDK 7 RoadMap里面,G1收集器就被视作JDK 7中HotSpot虚拟机的一项重要进化特征。从JDK 6 Update 14开始就有Early Access版本的G1收集器供开发人员实验和试用,但由此开始G1收集器的“实验状态”(Experimental)持续了数年时间,直至JDK 7 Update 4,Oracle才认为它达到足够成熟的商用程度,移除了“Experimental”的标识;到了JDK 8 Update 40的时候,G1提供并发的类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的G1收集器才被Oracle官方称为“全功能的垃圾收集器”(Fully-Featured Garbage Collector)。
G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了,JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器[1]。如果对JDK 9及以上版本的HotSpot虚拟机使用参数-XX:+UseConcMarkSweepGC来开启CMS收集器的话,用户会收到一个警告信息,提示CMS未来将会被废弃:
Java HotSpot(TM) 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.
但作为一款曾被广泛运用过的收集器,经过多个版本的开发迭代后,CMS(以及之前几款收集器)的代码与HotSpot的内存管理、执行、编译、监控等子系统都有千丝万缕的联系,这是历史原因导致的,并不符合职责分离的设计原则。为此,规划JDK 10功能目标时,HotSpot虚拟机提出了“统一垃圾收集器接口”[2],将内存回收的“行为”与“实现”进行分离,CMS以及其他收集器都重构成基于这套接口的一种实现。以此为基础,日后要移除或者加入某一款收集器,都会变得容易许多,风险也可以控制,这算是在为CMS退出历史舞台铺下最后的道路了。
作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。
那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。
G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。
Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象,将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图3-12所示。
虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。
G1将堆内存“化整为零”的“解题思路”,看起来似乎没有太多令人惊讶之处,也完全不难理解,但其中的实现细节可是远远没有想象中那么简单,否则就不会从2004年Sun实验室发表第一篇关于G1的论文后一直拖到2012年4月JDK 7 Update 4发布,用将近10年时间才倒腾出能够商用的G1收集器来。G1收集器至少有(不限于)以下这些关键的细节问题需要妥善解决:
- 譬如,将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?解决的思路我们已经知道(见3.3.1节和3.4.4节):使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。
- 譬如,在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?这里首先要解决的是用户线程改变对象引用关系时,必须保证其不能打破原本的对象图结构,导致标记结果出现错误,该问题的解决办法笔者已经抽出独立小节来讲解过(见3.4.6节):CMS收集器采用增量更新算法实现,而G1收集器则是通过原始快照(SATB)算法来实现的。此外,垃圾收集对用户线程的影响还体现在回收过程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度,G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。
- 譬如,怎样建立起可靠的停顿预测模型?用户通过-XX:MaxGCPauseMillis参数指定的停顿时间只意味着垃圾收集发生之前的期望值,但G1收集器要怎么做才能满足用户的期望呢?G1收集器的停顿预测模型是以衰减均值(Decaying Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。这里强调的“衰减平均值”是指它会比普通的平均值更容易受到新数据的影响,平均值代表整体平均状态,但衰减平均值更准确地代表“最近的”平均状态。换句话说,Region的统计状态越新越能决定其回收的价值。然后通过这些信息预测现在开始回收的话,由哪些Region组成回收集才可以在不超过期望停顿时间的约束下获得最高的收益。
如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:
- 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
- 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
- ·最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
- 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。
从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的,换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望[4]。
从Oracle官方透露出来的信息可获知,回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的,所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC)中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。通过图3-13可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。
毫无疑问,可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。不过,这里设置的“期望值”必须是符合实际的,不能异想天开,毕竟G1是要冻结用户线程来复制对象的,这个停顿时间再怎么低也得有个限度。它默认的停顿目标为两百毫秒,一般来说,回收阶段占到几十到一百甚至接近两百毫秒都很正常,但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能,所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。
从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率(Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。
G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制,官方资料[5]中将它们两个并称为“The Mostly Concurrent Collectors”。在未来,G1收集器最终还是要取代CMS的,而当下它们两者并存的时间里,分个高低优劣就无可避免。
相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。
不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载(Overload)都要比CMS要高。
就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的[6]。
在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索(SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点,但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。
以上的优缺点对比仅仅是针对G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,通常我们说哪款收集器要更好、要好上多少,往往是针对具体场景才能做的定量比较。按照笔者的实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,当然,以上这些也仅是经验之谈,不同应用需要量体裁衣地实际测试才能得出最合适的结论,随着HotSpot的开发者对G1的不断优化,也会让对比结果继续向G1倾斜。
« Dubbo 扩展点加载机制
Java I/O, NIO and NIO.2 (自译) »